Tag Archive: graphs


A while back, we started looking at a poorly thought-out article from the website C3Headlines. C3 is starting to make a name for itself as a goldmine of climate comedy- their claims have recently been addressed at Tamino and SkepticalScience.

We’re going to keep digging into C3‘s claim that carbon dioxide concentrations have been increasing linearly over the 20th century. They seemed to draw this claim by eyeballing the graph of CO2 concentrations and qualitatively describing them as linear, apparently using the inset in their first figure to compare linear, quadratic, and exponential trends. This is a faulty method: it’s an elementary fact of calculus that ANY smooth curve, when viewed appropriately, will appear linear. The point has already been made but it’s worthwhile to keep looking because there are some interesting graphical follies at play; examining them further might help us understand how and why graphs are misunderstood.

Figure 1: From C3Headlines’ article on “The Left/Liberal Bizarro Anti-Science Hyperbole”, which claims that CO2 concentrations are increasing linearly. Click to read it, if you dare…

C3‘s second graph in this article measures the change in atmospheric CO2 by calculating a month-to-month percentage change. It’s not entirely clear why they are using a percent change, rather than the standard practice of expressing rate of change as concentration change per year (like the source of their data uses). Whereas ppm/year is an absolute measure, each datum generated by the percentage-change method depends strongly upon the value of the previous month. As a measure of long-term rate of change, it is a bit questionable.

My primary concern, though, is with their use of monthly data in the first place. In my last article, we noted that, without explanation, C3 confined their focus to January CO2 concentrations. Were they consistent, they’d also look at January rates of change – of course, doing so might lead to unacceptable conclusions.

 Figure 2. Rates of CO2 accumulation have been calculated for the month of January, consistent with earlier investigation of January CO2 concentration. Over the period of observation, rates have increased at a significant (P~0.0005) acceleration of 0.11 ppm/year^2. Monthly rates throughout this article have been calculated by considering the change in CO2 between adjacent months, and assuming that a month is 1/12 of a year. Interpolated values of CO2 were used to avoid annoying data holes early in the record.

Instead, they look at the rate of change for every single month on record. Why do I find that problematic? Well, let’s look at the full record, with monthly resolution: Continue reading

I love graphs – my eyes quickly glaze over at a table of numeric data, but a graph, used correctly, can quickly and easily tell the whole story.

‘Used correctly’ is the key phrase – for all their power, graphs are infamously easy to bungle, and when used incorrectly they can misinform – or lie outright.

I’m going to look at an example that touches on a few graphical and statistical concepts near and dear to my heart, as well as carbon geochemistry.

Fig. 1: An image from C3Headlines; the 3 C's are "Climate, Conservative, Consumer". Oh, and the article is titled "The Left/Liberal Bizarro, Anti-Science Hyperbole Continues". It sure would be tragic if they made obvious n00b mistakes after using such language. Click for link!

Coming from an article on the website C3Headlines, this image claims that carbon dioxide concentrations have ‘Linear, Not Exponential Growth’. thereby ‘expos[ing] the lunacy of typical left/liberal/progressive/Democrat anti-science’, The author has reached this conclusion by graphing January CO2 levels* and fitting a linear trendline to them.

Already this is a warning sign – the comparisons the author makes are entirely qualitative, apparently  based up on eyeballing the graph. However, trend lines are created by a statistical process called a linear regression, which comes with a caveat: it will fit a trend line to ANY data given to it, linear or nonlinear. Fortunately, there are also ways of evaluating how good a trend line is. Continue reading